a2 United States Patent

Cappiello et al.

US009454594B2

10) Patent No.: US 9,454,594 B2

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

DYNAMIC SOURCING

Applicant: MicroStrategy Incorporated, Vienna,
VA (US)

Inventors: Scott Cappiello, San Marcos, CA (US);

Xun Feng, Great Falls, VA (US);

Yuliyan Kiryakov, Arlington, VA (US);

Jun Yuan, Great Falls, VA (US)

Assignee: MicroStrategy Incorporated, Vienna,

VA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 14/331,170

Filed: Jul. 14, 2014

Prior Publication Data

US 2014/0324768 Al Oct. 30, 2014

Related U.S. Application Data

Continuation of application No. 13/615,950, filed on
Sep. 14, 2012, now Pat. No. 8,782,083, which is a
continuation of application No. 12/907,494, filed on
Oct. 19, 2010, now Pat. No. 8,296,287.

Provisional application No. 61/252,810, filed on Oct.
19, 2009.

Int. CI.
GOGF 17/30 (2006.01)
100
New
Report

No Matching
Cube

140

Data
Warehouse

SQL Generation

Cube Matching Logic

45) Date of Patent: Sep. 27,2016
(52) US. CL
CPC ... GO6F 17/30592 (2013.01); GOG6F 17/30457
(2013.01)
(58) Field of Classification Search

CPC combination set(s) only.
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,296,287 B1* 10/2012 Cappiello GO6F 17/30592
707/713

2009/0177667 Al* 7/2009 Ramos GO6F 17/3048

* cited by examiner

Primary Examiner — Etienne Leroux
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Dynamic sourcing, in which a data request that is associated
with a query is received and a parameter of data needed for
satisfaction of the query is identified. Parameter information
defining data available in at least one cube stored in a cache
is accessed and the parameter is compared with the param-
eter information. Based on comparison results, it is deter-
mined whether one or more cubes in the cache include
sufficient data to satisfy the query. In response to a deter-
mination that one or more cubes include sufficient data to
satisfy the query, a response to the data request is generated
by executing the query against the one or more cubes. In
response to a determination that the cubes do not include
sufficient data to satisfy the query, a response to the data
request is generated by executing at least a portion of the
query against a database system.

16 Claims, 13 Drawing Sheets

110

Matching
Cube

o 150

U.S. Patent Sep. 27, 2016 Sheet 1 of 13 US 9,454,594 B2

—
o

New /110

Report

120

SQL Generation

130

Cube Matching Logic

Matching

No Matching Cube
Cube 150
=~
140 AN
\
v / co1 c02 \
[\
Data I |
Warehouse \\ /’
\ C03 Cc04 /
N s
~ P
~~ -

FIG. 1

U.S. Patent Sep. 27, 2016

A

~_ A

Database System

User 1
System

Sheet 2 of 13 US 9,454,594 B2
200
P 225
Cache
210
Server /
230

User N |~ 250
System

FIG. 2

U.S. Patent Sep. 27, 2016 Sheet 3 of 13 US 9,454,594 B2

(£%3
(=3
o

310
RECEIVE A DATA REQUEST THAT IS ASSOCIATED WITH A QUERY —

I

IDENTIFY A PARAMETER OF DATA NEEDED 320
FOR SATISFACTION OF THE QUERY

Il

ACCESS, FROM ELECTRONIC STORAGE, PARAMETER 330
INFORMATION DEFINING DATA AVAILABLE IN AT LEAST ONE —
CUBE STORED IN A CACHE

Il

COMPARE THE IDENTIFIED PARAMETER OF DATA NEEDED

FOR SATISFACTION OF THE QUERY WITH THE ACCESSED |_— 340

PARAMETER INFORMATION DEFINING DATA AVAILABLE IN THE
AT LEAST ONE CUBE STORED IN THE CACHE

+

BASED ON COMPARISON RESULTS, DETERMINE WHETHER ONE 350
OR MORE CUBES IN THE CACHE INCLUDE SUFFICIENT DATA TO —
SATISFY THE QUERY

I

IN RESPONSE TO A DETERMINATION THAT ONE OR MORE
CUBES IN THE CACHE INCLUDE SUFFICIENT DATA TO SATISFY | _— 360
THE QUERY, GENERATE A RESPONSE TO THE DATA REQUEST

BY EXECUTING THE QUERY AGAINST THE ONE OR MORE CUBES

I

IN RESPONSE TO A DETERMINATION THAT ONE OR MORE
CUBES IN THE CACHE DO NOT INCLUDE SUFFICIENT DATATO | _— 370
SATISFY THE QUERY, EXECUTE AT LEAST A PORTION OF THE

QUERY AGAINST A DATABASE

FIG. 3

US 9,454,594 B2

Sheet 4 of 13

Sep. 27, 2016

U.S. Patent

uoibay ‘A10bBa1en ‘yjuop

Ag 600z lequisdaQg
1o} p|oS sluUn ‘enusasy

Jinsoy podoy

¥ 'Old

—

oé\

{+~} (Ipjos spun]) wng :pjog spun

{+~} (1s00) wng 13s0D

{+~} (BnudAay) WING :BnUBASY

uoibay ‘way ‘Aiobaeoaqng ‘Alobisien ‘Yuop ‘Jauend)
(G002) u| Jed A sy

3qn)

PIOS SHUM ‘anusAsy
uoifay ‘A1o0bBsieD ‘Yuow
(Z15002) uj Yuow 1oy

HH@—._mw uhommm

0cP e

0Zh ~

US 9,454,594 B2

Sheet 5 of 13

Sep. 27, 2016

U.S. Patent

G 'Old

0€s

wolsAg aseqele(

KioBayen

£g 5002 0 ZE NP9 M
pue L ¢ }83AA 10} SnusASY

Jinsey yodayg

e
e

S0S e

{+~} ([pI0S snun]) wng :pjog sypun

{+~} (BnuUBASY) WNG :8NUSASY

uolbsy ‘way| ‘Aobejeagng ‘Aiobajed) ‘Yeapn
(2€5002) U o0 syl

3GnH

anuanay
AioBaren

(z£S002 “1EG002) Ul doapn 191

enp podoyg

0ZS e

008

oE\

U.S. Patent Sep. 27, 2016 Sheet 6 of 13 US 9,454,594 B2

IDENTIFY ATTRIBUTE(S) NEEDED | _— 605
FOR SATISFACTION OF THE QUERY

|
|
320
~
| <
|
|
|
|
|
|

610
IDENTIFY FILTER PARAMETER OF THE QUERY —

+

IDENTIFY METRIC(S) NEEDED | _—615
FOR SATISFACTION OF THE QUERY

ACCESS, FROM ELECTRONIC STORAGE, ATTRIBUTE | _—620
INFORMATION FOR CUBES STORED IN THE CACHE

|
|
|
330 \: 4
|
|
|
|
|

I

I

I

I
ACCESS, FROM ELECTRONIC STORAGE, FILTER INFORMATION | _— 625 :
FOR CUBES STORED IN THE CACHE |
I

I

I

I

Il

ACCESS, FROM ELECTRONIC STORAGE, METRIC INFORMATION | _— 630
FOR CUBES STORED IN THE CACHE

I

AND METRIC(S) FOR THE QUERY WITH THE ACCESSED |_~-635 |
ATTRIBUTE, FILTER, AND METRIC INFORMATION FOR THE I
CUBES STORED IN THE CACHE I

I

340 \{
| COMPARE THE IDENTIFIED ATTRIBUTE(S), FILTER PARAMETER,
|
|
|

_”
I
Iy
Iy
Iy
I
I
Iy
Iy
Iy
I
I
L
Iy
Iy
I
I
Iy
Iy
Iy
I
I
Iy
Iy
Iy
I
I
Iy
Iy

DETERMINE WHETHER ATTRIBUTE(S) ARE PRESENT INTHE | — 640
ATTRIBUTE INFORMATION FOR THE CUBES

+

DETERMINE WHETHER FILTER PARAMETER IS MORE | 645
RESTRICTIVE THAN THE FILTER INFORMATION FOR THE CUBES

|
!
|
!
! |
!
!
|

DETERMINE WHETHER METRIC(S) ARE DERIVABLE FROM THE | _— 650
METRIC INFORMATION FOR THE CUBES

US 9,454,594 B2

Sheet 7 of 13

Sep. 27, 2016

U.S. Patent

L "Old

0gL /

uolibay ‘Aiobajen ‘yuop

A9 500z Jequisda(
10} JlJold ‘shusAsy

Jinsoy Joday

{+~} (oud) wns 13014
uolbay ‘wa)| ‘Alobajeoqng ‘Alobajen ‘Yuop ‘Jsueny)

(5002) ul Jes A wi8YI4

¢9qn)

mK\

{+~} ([p1oS suun]) wns :pjog spun

{+~} (3s0D) wng 13509

{+~} (8nuanay) wWng :anusnsy

uolbay ‘wa)| ‘Alobajeoqng ‘Alobajen ‘Yuop ‘Jsueny)
(G00T) U] JEBA J9Y14

18qnd

Hjold ‘enuanay
uoibay ‘AloBaje) ‘Yuopy
(216002) Ul Yuo oY1

HH@—._mw tomwm

0z. e

(=
~

oE\

U.S. Patent Sep. 27, 2016 Sheet 8 of 13 US 9,454,594 B2

/ 635 & 640

Q2

COMPARE ATTRIBUTE(S) NEEDED 810
FOR SATISFACTION OF THE QUERY TO ATTRIBUTE(S) OF L
ONE OR MORE SINGLE CUBES

ATTRIBUTE(S) OF SINGLE
CUBE ARE SUFFICIENT FOR
SATISFACTION OF THE QUERY?

YES

l / 830

SELECT MATCHING CUBE FOR
EXECUTION OF THE QUERY

COMPARE ATTRIBUTE(S) NEEDED 840
FOR SATISFACTION OF THE QUERY TO ATTRIBUTE(S) OF —
MULTIPLE CUBES AGGREGATED

850

ATTRIBUTE(S) OF AGGREGATED
CUBES SUFFICIENT FOR
SATISFACTION OF THE QUERY?

YES

l / 860

SELECT AGGREGATED CUBE FOR
EXECUTION OF THE QUERY

DETERMINE THAT AT LEAST SOME DATA IS NEEDED | — 870
FROM A DATABASE TO SATISFY THE QUERY

U.S. Patent Sep. 27, 2016 Sheet 9 of 13 US 9,454,594 B2

/ 635 & 645

COMPARE FILTER PARAMETER OF THE QUERY TO | — 910
FILTER PARAMETER OF ONE OR MORE CUBES

=

FILTER PARAMETER OF THE
QUERY EQUALS FILTER
PARAMETER OF CUBE?

YES

930
/

SELECT CUBE WITH MATCHING
FILTER FOR EXECUTION OF THE
QUERY

FILTER PARAMETER OF THE
QUERY MORE RESTRICTIVE THAN
FILTER PARAMETER OF CUBE?

YES

l / 950

SELECT CUBE WITH LESS
RESTRICTIVE FILTER FOR
EXECUTION OF THE QUERY

DETERMINE THAT AT LEAST SOME DATA ISNEEDED | _— 960
FROM A DATABASE TO SATISFY THE QUERY

US 9,454,594 B2

Sheet 10 of 13

Sep. 27, 2016

U.S. Patent

91 @i sJojs pue

‘01 QI 84018 ‘6 QI 8401
‘g | 810}S 10} BNUBASY

Jinsoy Joday

0l '©Old

¢—

0€01 e

{+~} (enuUanay) wng :anuaray
210)S

(91 ‘Gl ‘0L =>) @l 81018 eI

sqnJ

anuanay
210]1S

(91 ‘01-8) Al 81018 :J8Y|14
APND 1odsy

0201 e

o::\

U.S. Patent Sep. 27, 2016 Sheet 11 of 13 US 9,454,594 B2

/ 635 & 650

1

COMPARE METRIC(S) NEEDED 1110
FOR SATISFACTION OF THE QUERY TO METRIC(S) L
INCLUDED IN ONE OR MORE CUBES

METRIC(S) NEEDED
FOR SATISFACTION OF THE
QUERY FOUND IN ONE OR MORE
CUBES?

YES

l /1130

SELECT THE ONE OR MORE CUBES
WITH MATCHING METRIC(S) FOR
EXECUTION OF THE QUERY

METRIC(S) NEEDED
FOR SATISFACTION OF THE
QUERY DERIVABLE FROM
METRICS IN ONE OR MORE
CUBES?

NO

l /1150

DETERMINE THAT AT LEAST SOME
DATA IS NEEDED FROM A
DATABASE TO SATISFY THE QUERY

SELECT THE ONE OR MORE CUBES FROM WHICH THE | — 1160
METRIC(S) NEEDED FOR THE QUERY ARE DERIVABLE

DERIVE METRIC(S) NEEDED FOR THE QUERY UsING |_— 1170
DATA FROM THE SELECTED ONE OR MORE CUBES

L

| 1180
STORE DERIVED METRIC(S) IN CUBE DATA

FIG. 11

US 9,454,594 B2

Sheet 12 of 13

Sep. 27, 2016

U.S. Patent

¢l Old

0ecL //

uolibay
‘Kobajes ‘yuo Ag
G00c¢ Jequiede(Joj Jljoid

Jinsoy yodoy

{+~} (3s0D) wng 13800
uoibay way ‘AlobBajeoqng ‘Alobsien ‘uop ‘depend

(5002) ul Jes A ey

¢9qn)

vzl ~

{+~} (8nusasy) wng :onusnsy
uoibsy way| ‘Alobajeogng ‘Aiobsien ‘yuoly ‘leuend
(S002) ul Jes A 1ayI4

13qn3

Joid
uolibay ‘A1oBsje) ‘qiuo

(215002) ul wuoly :J8y14

Hqu._mw Joday

0Z2Z1 ~

(=
N
-~

05\

U.S. Patent Sep. 27, 2016 Sheet 13 of 13 US 9,454,594 B2

5
/ \ 2
=)
\W\n\gﬁﬁﬁﬂ/ﬁ// :
a
<
) S
\
N\
\ \
\ N
\ AN
\
\ 8 \v7
\\ st L1
|] 1L
V|4 Bl =
\ L LI 8
\ T — 1111 5 P11
4oL 1= *g
7 4 11 ‘.C_':;
T — 111l =
lT_ L §- (ap]
T H T 1111 (D
T Ll E
14 F g — -
— | | T
¥ 8 §:
=] > LS
S 5 a
h / 2 ®
/ 8 &
/ o S
/ o %]
/
/ //
/
/ e

US 9,454,594 B2

1
DYNAMIC SOURCING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation (and claims the benefit
of priority under 35 USC 120) of U.S. application Ser. No.
13/615,950, filed Sep. 14, 2012, which is a continuation of
U.S. application Ser. No. 12/907,494, filed Oct. 19, 2010,
which claims the benefit to U.S. Provisional Application No.
61/252,810, filed Oct. 19, 2009. All of these prior applica-
tions are incorporated herein by reference in their entirety
for all purposes.

FIELD

The present disclosure generally relates to database tech-
nology.

BACKGROUND

Computer systems are used to manage and store data. As
such, they may be used to analyze data and generate reports
based on the analysis results. For instance, computer sys-
tems may filter data and calculate metric values based on the
filtered data, ultimately providing a report including the
calculated metric values.

SUMMARY

In one aspect, this disclosure relates to dynamic sourcing
technology.

The details of one or more implementations are set forth
in the accompanying drawings and the description, below.
Other potential features and advantages of the disclosure
will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system for report generation.

FIGS. 2 and 13 are diagrams of exemplary systems.

FIGS. 3, 6, 8, 9, and 11 are flowcharts of exemplary
processes.

FIGS. 4, 5, 7, 10, and 12 are diagrams of exemplary
reports and associated data structures.

Like reference numbers represent corresponding parts
throughout.

DETAILED DESCRIPTION

In some implementations, a database system enables
application designers to build intelligent cubes, which may
be pre-aggregated, pre-calculated caches of data that exist in
an application server (e.g., intelligence server) in the data-
base system. When the database system receives a request to
create a new report, the database system evaluates the report
definition and determines whether the report can be resolved
by accessing one or more intelligent cubes, instead of
accessing the underlying database. When the report can be
resolved by accessing one or more intelligent cubes, the
report may execute more quickly because the database
system accesses pre-processed data to generate the report.

In some examples, the database system performs a
dynamic selection of whether to use the pre-processed data
found in the cubes and which one or more cubes to use. The
dynamic selection is transparent to the report designer and

15

20

30

40

45

50

2

the report designer does not need to know that cubes exist or
know which cube will be used to resolve the report request.
In addition, the database system is able to further process the
pre-processed data found in the cubes. In this regard, the
database system allows report requests to be retrieved from
a cube that is not an exact match. For instance, the database
system may perform additional filtering, aggregation, and
calculations to obtain the final result from the cubes without
having to access the underlying database.

In addition, the database system may leverage one or
more cubes to resolve part of a report request and the
underlying database to resolve another part of the report
request. For instance, the database system may obtain metric
one from cube one, metric two from cube two, and metric
three from the database.

FIG. 1 illustrates a system 100 for report generation. A
request for a new report 110 is received. For example, an end
user or an analyst may request a report using a user interface.
As another example, the report 110 may be automatically
generated, such as by an automated batch process. The new
report 110 may have an underlying query which may be used
to retrieve data to be displayed in the report 110.

The system 100 performs SQL (Structured Query Lan-
guage) generation 120 to generate SQL code that defines a
query used to retrieve data for the report 110. The generated
SQL code may, for example, specify attributes of data to
retrieve (e.g., sales, cost, region), filter parameters (e.g.,
criteria) used to filter data for the report 110 (e.g., sales in
November of the year two thousand and nine, sales for a
particular region), and calculated metrics (e.g., sum of sales
by region, average sales by salesperson).

The system 100 performs cube matching logic 130 to
determine whether one or more cubes 150 include sufficient
data to satisfy the query used for the report 110. A cube may
be a pre-processed abstraction of data stored in a database
system. For example, each of the cubes 150 may be a
pre-processed abstraction of data stored in a data warehouse
140. The one or more cubes 150 may be stored in a cache,
such as in the memory of one or more servers. A query
executed against the one or more cubes 150 is generally
completed more quickly than a query executed against the
data warehouse 140.

The cube matching logic 130 may include identifying
information needed for satisfaction of the query (e.g., attri-
butes, filter parameters, metrics), accessing parameter infor-
mation defining data available in the cubes 150, and com-
paring the information needed for satisfaction of the query
to the parameter information defining data available in the
cubes 150. If, by performing the cube matching logic 130,
the system 100 determines that one or more cubes 150
include sufficient data to satisfy the query, the query may be
executed against the one or more cubes. If no cube or
combination of cubes includes sufficient data to satisfy the
query, at least a portion of the query may be executed against
the data warehouse 140. The cube matching logic 130 is
described in more detail below.

FIG. 2 illustrates an exemplary system 200 for report
generation. The system 200 includes a server 210, a database
system 220, a cache 225, a network 230, and multiple user
systems 240 and 250. The network 230 enables the server
210 and the multiple user systems 240 and 250 to exchange
electronic communications. The server 210 is an electronic
device configured to execute programs, access data from the
database system 220 and the cache 225, and exchange
communications with the multiple user systems 240 and 250
over the network 230.

US 9,454,594 B2

3

The database system 220 is an electronic device config-
ured to store data and exchange communications with the
server 210 (e.g., multiple servers or computers) over a direct
connection or network. For example, the database system
220 may be configured to store an organization’s data and
output the organization’s data in response to requests (e.g.,
SQL statements or queries). In this example, the database
system 220 may exchange communications with the server
210 to receive input defining data needed from the database
system 220 and provide the data needed as output to the
server 210. The database system 220 may include one or
more databases and/or data warehouses.

The cache 225 is electronic storage which may be used to
store one or more “cubes,” where a cube is a pre-processed
abstraction of data stored in the database system 220. For
example, memory of the server 210 may serve as the cache
225. Data may be able to be retrieved from the cache 225
more quickly than from the database system 220. Although
the server 210 and the cache 225 are shown as separate items
in FIG. 2, the server 210 and the cache 225 may be part of
the same physical device. Alternatively, the server 210 and
the cache 225 may be part of different physical devices.

The network 230 is configured to enable exchange of
electronic communications between devices connected to
the network 230. For example, the network 230 may be
configured to enable exchange of electronic communica-
tions between the server 210 and the multiple user systems
240 and 250. The network 230 may include, for example,
one or more of the Internet, Wide Area Networks (WANs),
Local Area Networks (LANs), analog or digital wired and
wireless telephone networks (e.g., a PSTN, Integrated Ser-
vices Digital Network (ISDN), a cellular network, and
Digital Subscriber Line (DSL)), radio, television, cable,
satellite, or any other delivery or tunneling mechanism for
carrying data. Network 230 may include multiple networks
or subnetworks, each of which may include, for example, a
wired or wireless data pathway. The network 230 may
include a circuit-switched network, a packet-switched data
network, or any other network able to carry electronic
communications. For example, the network 230 may include
networks based on the Internet protocol (IP) or asynchro-
nous transfer mode (ATM).

The multiple user systems 240 and 250 each may be a
general-purpose computer (e.g., a desktop personal com-
puter, a workstation, or a laptop computer) that is configured
to communicate with the server 210 over the network 230.
Users of the user systems 240 and 250 may submit data
requests to the server 210 over the network 230. For
example, data requests may be associated with a query, such
as a query used as the basis for a report. The server 210
determines whether data stored in the cache 225 is sufficient
to satisfy the query. If data stored in the cache 225 is
sufficient to satisfy the query, the server 210 may execute the
query against the data in the cache 225. If data stored in the
cache 225 is not sufficient to satisty the query, the server 210
may execute at least a portion of the query against data in the
database system 220.

In some implementations, the multiple user systems 240
and 250 may be mobile or wireless devices or devices
designed for a specific function. For example, the multiple
user systems 240 and 250 may include a cell phone, a smart
phone, a tablet PC, a personal digital assistant (“PDA”), or
any other portable device configured to communicate over a
network and display information. Although FIG. 2 illustrates
two user systems for brevity, actual implementations may
include more (and, perhaps, many more) user systems.

25

40

45

50

55

4

When cubes are created in the cache 225, they may be
“published.” For example, a notification may be sent to the
user systems 240 and 250 announcing the availability of new
cubes. As another example, the server 210 may provide a
service where the user systems 240 and 250 can request a list
of available cubes. In some implementations, the server 210
occasionally synchronizes data between the database system
220 and cubes in the cache 225. When cubes are created,
they may be marked as available or as not available, and the
server 210 may ignore cubes marked as unavailable when
determining whether cubes have sufficient data to satisty a
query request.

FIG. 3 illustrates a process 300 for query execution. The
operations of the process 300 are described generally as
being performed by the system 200. The operations of the
process 300 may be performed exclusively by the server
210, may be performed exclusively by another system, or
may be performed by a combination of the server 210 and
another system. In some implementations, operations of the
process 300 may be performed by one or more processors
included in one or more electronic devices.

The system 200 receives a data request that is associated
with a query (310). For example, the server 210 may receive
a data request associated with a query from the user system
240 or the user system 250 over the network 230. The query
may be the basis for a report. For example, a report may be
based on a pre-defined query that is defined when a report
definition is created. A query may be “hard-coded,” where
all code of the query is specified when the query is defined,
or a query may be a “prompted,” or “parameter” query,
where parts of the query code are filled-in when the query is
executed in response to a user’s answers to one or more
prompts.

Other types of queries may be associated with the data
request. For example, the data request may be associated
with a query that is included as part of executable computer
program code (e.g., the query may be embedded into or
otherwise included in the computer program code), and the
data request may be received when the computer program
code is executed. An another example, the query may be an
“ad hoc” query. For example, an ad hoc query may be
entered interactively by an analyst in a user interface. As yet
another example, a query may be a “drilling” query, where
an analyst “drills down” from summary information to more
detailed information.

As mentioned, the query may be the basis for a report.
FIGS. 4 and 5 illustrate exemplary reports and associated
underlying queries. For example, FIG. 4 illustrates a dia-
gram 400 in which a report result 410 is generated. The
report result 410 displays revenue and units sold for the
month of December of year two thousand five, grouped by
month, category, and region. The report result 410 is based
on a report query 420. Similarly, FIG. 5 illustrates a diagram
500 in which a report result 505 is generated. The report
result 505 displays revenue for weeks thirty one and thirty
two of year two thousand five, grouped by category. The
report result 505 is based on a report query 510.

Returning to FIG. 3, the system 200 identifies a parameter
of data needed for satisfaction of the query (320). Param-
eters of data needed for satisfaction of the query may
include, for example, attributes, filter parameters, and/or
metrics. An attribute is a type of data to be accessed by the
query. For example and as shown in FIG. 4, the query 410
accesses month, category, and region attributes. As another
example and as shown in FIG. 5, the query 510 accesses a
category attribute.

US 9,454,594 B2

5

A filter parameter may be needed for satisfaction of the
query. A filter parameter restricts data to be displayed in a
report. For example and as shown in FIG. 4, the query 420
includes a filter parameter restricting the month attribute to
be the twelfth month (i.e., December) of the year two
thousand five. As another example and as shown in FIG. 5,
the query 510 includes a filter parameter restricting the week
attribute to be either the thirty first or the thirty second week
of the year two thousand five.

A metric may be needed for satisfaction of the query. A
metric is a computed value. For example and as shown in
FIG. 4, the query 420 includes revenue and units sold
metrics, which are summations of revenue and units sold
attributes, respectively. The revenue and units sold metrics
may be organized by other attributes. For example, the query
420 may group revenue and units sold metrics by the month,
category and region attributes. As another example and as
shown in FIG. 5, the query 510 includes a revenue metric
that is organized by a category attribute.

Returning to FIG. 3, the system 200 accesses, from
electronic storage, parameter information defining data
available in at least one cube stored in a cache (330). A cube
may be a pre-processed abstraction of data stored in a
database system. A cube may be implemented as one or
more data structures, where a data structure may have
multiple dimensions. A cube may be cached, for example, in
memory of one or more server computing devices. The data
in the cube may be stored in the cache prior to the receipt of
the data request. Accessing data from a cube is generally
faster than accessing data from a database system.

Parameter information defining data available in a cube
may include, for example, attributes, filter parameters and
metrics. For example and as shown in FIG. 4, a cube 430
includes quarter, month, category, subcategory, item, and
region attributes. The cube 430 includes a filter parameter
restricting the year attribute to include values for the year
two thousand five. The cube 430 includes revenue, cost, and
units sold metrics, where the revenue, cost, and units sold
metrics are the summation of revenue, cost, and units sold
attributes, respectively.

Filter parameters may be specified using one or more filter
operators. A filter operator may be used with attributes
having data types which support a “less than” operator, such
as numeric, character, and date/time attributes. Filter opera-
tors can represent, for example, the following conditional
tests: equals, in list, not equal, not in list, greater than, less
than, greater than or equal, less than or equal, between, not
between, is null, and is not null.

Returning to FIG. 3, the system 200 compares the iden-
tified parameters of data needed for satisfaction of the query
with the accessed parameter information defining data avail-
able in the at least one cube stored in the cache (340). For
example, attributes, filter parameters, and metrics needed for
satisfaction of the query may be compared to attributes, filter
parameters, and metrics defining data in one or more cubes.
In the example of FIG. 4, the parameters needed for satis-
faction of the query 420 may be compared to the parameters
defining data available in the cube 430. In the example of
FIG. 5, the parameters needed for satisfaction of the query
510 may be compared to the parameters defining data
available in the cube 520.

Returning to FIG. 3, the system 200 determines, based on
the comparison results, whether one or more cubes in the
cache include sufficient data to satisfy the query (350). For
example, the system 200 may determine whether the attri-
butes, filter parameters, and metrics needed for satisfaction
of the query are available in one or more cubes. In the

20

25

30

40

45

55

6

example of FIG. 4, the month, category, and region attributes
needed for satisfaction of the query 420 are each included in
the cube 430. Therefore the cube 430 includes sufficient
attributes to satisfy the query 420.

The filter parameter of the query 420 is more restrictive
than the filter parameter of the cube 430. That is, the query
420 restricts month values to be December of the year two
thousand five while the filter for the cube 430 filters date
values in the cube 430 to have a year value of two thousand
five. In other words, a date value matching the query 420
filter will also match the filter for the cube 430. Conse-
quently, the cube 430 includes sufficient values for filtered
attributes to satisfy the query 420.

The cube 430 includes pre-processed metrics for revenue,
cost, and units sold, which are sufficient to satisfy the
revenue and units sold metrics specified in the query 420.
Since the cube 430 includes sufficient attributes, filter
parameters, and metrics needed to satisfy the query 420, the
system 200 determines, for the example of FIG. 4, that at
least one cube in the cache includes sufficient data to satisfy
the query 420.

In the example of FIG. 5, the week and category attributes
needed for satisfaction of the query 510 are each included in
the cube 520. Therefore, the cube 520 includes sufficient
attributes to satisfy the query 510. The cube 520 includes
pre-processed metrics for revenue and units sold, which are
sufficient to satisfy the revenue metric specified in the query
510.

However, the filter parameter of the query 510 is less
restrictive than the filter for the cube 520. That is, the filter
for the query 510 restricts week values to be either the thirty
first or thirty second week of the year two thousand five,
while the filter for the cube 520 restricts week values to be
the thirty second week of the year two thousand five. In other
words, attributes having week values of the thirty first week
of the year two thousand five are needed to satisfy the query
510, but week values of the thirty first week of two thousand
five are not included in the cube 520. Therefore, the cube
520 does not include sufficient data to satisfy the query 510.
Assuming that the cube 520 is the only cube in the cache, the
system 200 determines, for the example of FIG. 5, that the
cubes do not include sufficient data to satisty the query 510.

Returning to FIG. 3, in response to a determination that
one or more cubes in the cache include sufficient data to
satisfy the query, the system 200 generates a response to the
data request by executing the query against the one or more
cubes (360). For instance, in the example of FIG. 4, the
system 200 executes the query 420 against the cube 430 to
produce the report result 410.

The system 200 may select a subset of multiple cubes in
the cache that include sufficient data to satisfy the query and
may execute the query against only the selected subset. For
instance, the system 200 may execute the query by only
accessing information in the cache, and without accessing a
database system. The query may be executed against the
cache even if a report does not specity or indicate that the
cache should be used (e.g., report designers do not need to
configure reports to run against cubes in the cache).

Returning to FIG. 3, in response to a determination that
one or more cubes in the cache do not include sufficient data
to satisfy the query, the system 200 executes at least a
portion of the query against a database (370). For instance,
in the example of FIG. 5, the system 200 executes at least a
portion of the query 510 against a database 530. For
example, the system 200 may execute the part of the query
510 associated with the thirty first week of the year two
thousand five against the database 530 and may execute the

US 9,454,594 B2

7

part of the query 510 associated with the thirty second week
of the year two thousand five against the cube 520. In this
example, the system 200 produces to the report 505 by
combining the results received from the cube 520 with the
results received from the database 530. In some implemen-
tations, the system 200 may log reasons for why particular
cubes or combinations of cubes did not have sufficient data
to satisfy a particular query.

FIG. 6 illustrates a process 600 for determining whether
a cube has sufficient data to satisfy a query. The operations
of the process 600 are described generally as being per-
formed by the system 200. The operations of the process 600
may be performed exclusively by the server 210, may be
performed exclusively by another system, or may be per-
formed by a combination of the server 210 and another
system. In some implementations, operations of the process
600 may be performed by one or more processors included
in one or more electronic devices.

FIG. 6 describes in additional detail some of the process-
ing steps of the process 300 described above in reference to
FIG. 3. For example, steps 605, 610, and 615 described
below may be used in identifying parameters of data needed
for satisfaction of the query referenced above with respect to
reference numeral 320. Steps 620, 625, and 630 described
below may be used in accessing parameter information
describing data available in at least one cube stored in a
cache referenced above with respect to reference numeral
330. Step 635 described below may be used in comparing
the identified parameter of data needed for satisfaction of the
query with the accessed parameter information defining data
available in the at least one cube stored in a cache referenced
above with respect to reference numeral 340. Steps 640, 645,
and 650 described below may be used in determining
whether one or more cubes in the cache include sufficient
data to satisty the query referenced above with respect to
reference numeral 350.

Referring to FIG. 6, the system 200 identifies one or more
attributes needed for satisfaction of the query (605). For
example, the system 200 may identify attributes needed for
satisfaction of a query 710 illustrated in FIG. 7. FIG. 7
illustrates a diagram 700 in which a report result 715 is
generated based on the query 710. The system 200 may
identify, for example, month, category, region, revenue, and
profit attributes which are needed for satisfaction of the
query 710.

Returning to FIG. 6, the system 200 identifies one or more
filter parameters of the query (610). As mentioned above, a
filter parameter may be used to filter retrieved data. For
example, the system 200 may, as shown in FIG. 7, identify
a filter parameter restricting month values to be December of
the year two thousand five for the query 710.

Returning to FIG. 6, the system 200 identifies one or more
metrics needed for satisfaction of the query (615). As
mentioned above, a metric is a computed value. For
example, the system 200 may, as shown in FIG. 7, identify
revenue and profit metrics needed for satisfaction of the
query 710, where the revenue and profit metrics are sum-
mations of revenue and profit attributes, respectively.

Returning to FIG. 6, the system 200 accesses, from
electronic storage, attribute information for cubes stored in
the cache (620). Attribute information may be accessed for
one cube or for multiple cubes, where each cube is a data
structure which may be stored, for example, in memory of
a server computing device. For example, as shown in FIG.
7, attribute information for cubes 720 and 730 may be
accessed. The cube 720 includes attribute information for
quarter, month, category, subcategory, item, region, revenue,

25

40

45

55

8

cost, and units sold attributes. The cube 730 includes attri-
bute information for quarter, month, category, subcategory,
item, region, and profit attributes.

Returning to FIG. 6, the system 200 accesses, from
electronic storage, filter information for cubes stored in the
cache (625). Filter information may be accessed for one or
more cubes. For example, as shown in FIG. 7, the cubes 720
and 730 each include a filter which restricts date values to be
in the year two thousand five.

Returning to FIG. 6, the system 200 accesses, from
electronic storage, metric information for cubes stored in the
cache (630). Metric information may be accessed for one or
more cubes. For example, as shown in FIG. 7, the cube 720
includes revenue, cost, and units sold metrics and the cube
730 includes a profit metric.

The system 200 compares the identified attribute(s), filter
parameter(s), and metric(s) for the query with the accessed
attribute, filter, and metric information for the cubes stored
in the cache (635). As described in more detail below with
respect to FIGS. 8 to 12, attribute information may be
compared to determine whether attributes needed for satis-
faction of the query are present in a single cube or collec-
tively in multiple cubes. Additionally, filter parameters may
be compared to determine whether a filter parameter of the
query is more restrictive or less restrictive than filter infor-
mation for the cubes and metric information may be com-
pared to determine whether one or more query metrics are
derivable from metric information for the cubes.

The system 200 determines whether one or more attri-
butes are present in the attribute information for the cubes
(640). Determining whether one or more attributes are
present in the attribute information for the cubes is described
in more detail below with respect to FIG. 8.

The system 200 determines whether a filter parameter is
more restrictive than the filter information for the cubes
(645). Determining whether a filter parameter is more
restrictive than the filter information for the cubes is
described in more detail below with respect to FIG. 9.

The system 200 determines whether one or more metrics
are derivable from the metric information for the cubes
(650). Determining whether one or more metrics are deriv-
able from the metric information for the cubes is described
in more detail below with respect to FIG. 11.

FIG. 8 illustrates a process 800 for determining whether
one or more query attributes are present in cube attribute
information. The process 800 may used in comparing the
identified attribute(s), filter parameter, and metric(s) for the
query with the accessed attribute, filter, and metric infor-
mation for the cubes stored in the cache referenced above
with respect to reference numeral 635 and in determining
whether attribute(s) are present in the attribute information
for the cubes referenced above with respect to reference
numeral 640. The operations of the process 800 are
described generally as being performed by the system 200.
The operations of the process 800 may be performed exclu-
sively by the server 210, may be performed exclusively by
another system, or may be performed by a combination of
the server 210 and another system. In some implementa-
tions, operations of the process 800 may be performed by
one or more processors included in one or more electronic
devices.

The system 200 compares one or more attributes needed
for satisfaction of the query to one or more attributes of one
or more single cubes (810). For example, as shown in FIG.
7, the system 200 may compare attributes needed for satis-
faction of the query 710 to attribute information of the cube
720 and/or the cube 730. Month, category, region, revenue,

US 9,454,594 B2

9

and profit attributes are needed for satisfaction of the query
710. The cube 720 includes attribute information for quarter,
month, category, subcategory, item, region, revenue, cost,
and units sold. The cube 730 includes attribute information
for quarter, month, category, subcategory, item, region, and
profit.

Returning to FIG. 8, the system 200 determines whether
one or more attributes of a single cube are sufficient for
satisfaction of the query (820). For instance, in the example
of FIG. 7, the system 200 may determine that the cube 720
includes attribute information for month, category, region,
and revenue attributes, but does not include attribute infor-
mation for a profit attribute needed for the query 710.
Similarly, the system 200 may determine that the cube 730
includes attribute information for month, category, region,
and profit attributes, but does not include attribute informa-
tion for a revenue attribute needed for the query 710.

If one or more attributes of a single cube are sufficient for
satisfaction of the query, the system 200 selects a matching
cube for execution of the query (830). In the example of
FIG. 7, no single cube has sufficient attribute information to
satisfy the query 710, as both the cube 720 and the cube 730
are missing a needed attribute. Suppose, however, that in
another example that the cube 720 included a profit attribute
and that the cube 730 included a revenue attribute. In this
adapted example, either the cube 720 or the cube 730 may
be selected for execution of the query 710.

Returning to FIG. 8, if no combination of one or more
attributes of a single cube is sufficient for satisfaction of the
query, the system 200 compares one or more attributes
needed for satisfaction of the query to one or more attributes
of two or more aggregated cubes (840). For instance, in the
example of FIG. 7, no single cube (e.g., neither the cube 720
nor the cube 730) includes attributes sufficient for satisfac-
tion of the query 710. The system 200 may compare
attributes needed for satisfaction of the query 710 to the
attribute information of an aggregation of the cube 720 and
the cube 730.

Returning to FIG. 8, the system 200 determines whether
one or more attributes of two or more aggregated cubes are
sufficient for satisfaction of the query (850). For instance, in
the example of FIG. 7, the system 200 may determine that
an aggregation of the cubes 720 and 730 has all of the
month, category, region, revenue, and profit attributes
needed for satisfaction of the query 710.

Returning to FIG. 8, if one or more attributes of two or
more aggregated cubes are sufficient for satisfaction of the
query, the system 200 selects the two or more aggregated
cubes for execution of the query (860). For instance, in the
example of FIG. 7, the system 200 may select the cubes 720
and 730 for execution of the query 710. If more than one
combination of aggregated cubes includes attributes suffi-
cient for satisfaction of the query, the system 200 may select
a combination of aggregated cubes that enables satisfaction
of the query in the least amount of time. For example, the
smallest aggregation may be selected.

Returning to FIG. 8, if no combination of one or more
attributes of two or more aggregated cubes is sufficient for
satisfaction of the query, the system 200 determines that at
least some data is needed from a database to satisfy the
query (870). For instance, in the example of FIG. 5, where
no cube or combination of aggregated cubes is sufficient to
satisfy the query 510, the system 200 may determine that
data is needed from the database system 530 to satisfy the
query 510.

FIG. 9 illustrates a process 900 for determining whether
a filter parameter is more restrictive than the filter informa-

20

25

40

45

55

65

10

tion for one or more cubes. The process 900 may be used in
comparing the identified attribute(s), filter parameter, and
metric(s) for the query with the accessed attribute, filter, and
metric information for the cubes stored in the cache refer-
enced above with respect to reference numeral 635 and in
determining whether a filter parameter of a query is more
restrictive than the filter information for one or more cubes
referenced above with respect to reference numeral 645. The
operations of the process 900 are described generally as
being performed by the system 200. The operations of the
process 900 may be performed exclusively by the server
210, may be performed exclusively by another system, or
may be performed by a combination of the server 210 and
another system. In some implementations, operations of the
process 900 may be performed by one or more processors
included in one or more electronic devices.

The system 200 compares one or more filter parameters of
the query to one or more filter parameters of one or more
cubes (910). For example, as shown in FIG. 10, a filter
parameter of a report query 1010 may be compared to a filter
parameter of a cube 1020. The report query 1010 is used as
a basis for generation of a report result 1030. The report
query 1010 includes a filter parameter restricting a store
identifier to have a value in the range of eight to ten,
inclusive, or equal to the value sixteen. The cube 1020
includes a filter parameter restricting a store identifier to
have a value less than or equal to ten, equal to fifteen, or
equal to sixteen.

Returning to FIG. 9, the system 200 determines whether
a filter parameter of the query is equivalent to a filter
parameter of a cube (920). For instance, in the example of
FIG. 10, the system 200 may determine that the filter
parameter of the query 1010 is not equivalent to the filter
parameter of the cube 1020. In another example, the system
200 may determine, for example, that a filter parameter of a
query and a filter parameter of a cube both restrict year
attribute values to be equal to the year two thousand five.

If a filter parameter of the query is equivalent to a filter
parameter of a cube, the system 200 selects the cube with the
matching filter for execution of the query (930). For
example, in the example where a filter parameter of a query
and a filter parameter of a particular cube both restrict year
attribute values to be equal to the year two thousand five, the
system 200 may select the cube for execution of the query.
If more than one cube includes a filter parameter equivalent
to the filter parameter of the query, the system 200 may
select the cube that enables satisfaction of the query in the
least amount of time.

If a filter parameter of the query is not equivalent to a filter
parameter of a cube, the system 200 determines whether a
filter parameter of the query is more restrictive than a filter
parameter of a cube (940). If a filter parameter of the query
is more restrictive than the filter parameter of a cube, an
attribute value matching the query filter parameter will also
match the filter parameter for the cube. If a filter parameter
of the query is less restrictive than the filter parameter of a
cube, an attribute value matching the query filter parameter
may not match the filter parameter for the cube. In other
words, a value needed for satisfaction of the query may not
be available in the cube.

For instance, in the example of FIG. 10, the system 200
may determine that the filter parameter for the query 1010 is
more restrictive than the filter parameter for the cube 1020.
For example, the filter parameter for the query 1010 does not
allow store identifier values between one to seven, inclusive,
or the value fifteen, while the filter parameter for the cube

US 9,454,594 B2

11

1020 does allow store identifier values from one to seven,
inclusive, and the value fifteen.

Returning to FIG. 9, if a filter parameter of the query is
more restrictive than a filter parameter of a cube, the system
200 selects the cube with the less restrictive filter for
execution of the query (950). For instance, in the example of
FIG. 10, where the cube 1020 has a less restrictive filter than
the query 1010, the system 200 may select the cube 1020 for
execution of the query 1010. If more than one cube includes
a filter parameter that is less restrictive than the query, the
system 200 may select the cube that enables satisfaction of
the query in the least amount of time.

Returning to FIG. 9, if no filter parameters of any cube are
less restrictive than the filter parameter the query, the system
200 determines that at least some data is needed from a
database to satisfy the query (960). For example, in refer-
ence to FIG. 2, if the server 210 determines that no filter
parameters of any cube in the cache 225 are less restrictive
than a filter parameter of a query request received from the
user system 250, the server 210 may determine that at least
some data is needed from the database system 220 to satisty
the received query request.

FIG. 11 illustrates a process 1100 for determining whether
one or more query metrics are derivable from cube metric
information. Steps 1110 to 1160 of the process 1100 may
used in comparing the identified attribute(s), filter param-
eter, and metric(s) for the query with the accessed attribute,
filter, and metric information for the cubes stored in the
cache referenced above with respect to reference numeral
635 and in determining whether metrics(s) are derivable
from the metric information for the cubes referenced above
with respect to reference numeral 650. The operations of the
process 1100 are described generally as being performed by
the system 200. The operations of the process 1100 may be
performed exclusively by the server 210, may be performed
exclusively by another system, or may be performed by a
combination of the server 210 and another system. In some
implementations, operations of the process 1100 may be
performed by one or more processors included in one or
more electronic devices.

The system 200 compares one or more metrics needed for
satisfaction of the query to one or more metrics included in
one or more cubes (1110). For example, as shown in FIG. 12,
metrics for a report query 1210 may be compared to metric
information for a cube 1220 and metric information for a
cube 1230. The report query 1210 is used as a basis for
generation of a report result 1240. The report query 1210
includes a profit metric. The cube 1220 includes a revenue
metric and the cube 1230 includes a cost metric. As another
example and as shown in FIG. 4, metrics for the report query
420 may be compared to metric information for the cube
430. The report query 420 includes revenue and units sold
metrics. The cube 430 includes revenue, cost, and units sold
metrics.

In some implementations, the system 200 compares the
filter of the query to the metrics of the cube. For example,
a cube may have a filter of Year equals 2005, but also
includes metrics that have more restrictive filters, such as
Sales Quarter One of 2005 and Sales Quarter Two of 2005.
In this example, a query searching for Sales Quarter Three
of 2005 would not hit the cube, but a query searching for
Sales Quarter One of 2005 would hit the cube. As such, the
system 200 matches metrics to metrics and also concurrently
accounts for filtering.

Returning to FIG. 11, the system 200 determines whether
metrics(s) needed for satisfaction of the query are found in
one or more cubes (1120). For instance, in the example of

40

45

50

12

FIG. 12, the system 200 may determine that the profit metric
needed for satisfaction of the query 1210 is not found in the
metric information for the cube 1220 or the metric infor-
mation for the cube 1230. However, in the example of FIG.
4, the system 200 may determine that the revenue and units
sold metrics needed for satisfaction of the report query 420
are found in the cube 430.

In some examples, the system 200 takes into account
whether the combination of metrics in a single cube could
eliminate rows. For instance, suppose a cube includes Units
Sold and Units Received (e.g., inventory shipments). Now
on any given day, a store may not sell every item it stocks
nor take new stock of every item it sells—the list of items
may be different. The cube may be built such that it contains
only items that are both sold and were restocked on the same
day, or it could be built so that it contains all items,
regardless of whether there were any units sold or received.
When matching a query to a cube, the system 200 may take
that into account in deciding whether the cube may be used.

If the metric(s) needed for satisfaction of the query are
found in one or more cubes, the system 200 selects the one
or more cubes with matching metric(s) for execution of the
query (1130). For instance, in the example of FIG. 4 where
the cube 430 includes metrics matching the metrics needed
for the query 420, the system 200 may select the cube 430
for execution of the query 420.

Returning to FIG. 11, if the metric(s) needed for satisfac-
tion of the query are not found in one or more cubes, the
system 200 determines whether metric(s) needed for satis-
faction of the query are derivable from one or more metrics
in one or more cubes (1140). For instance, in the example of
FIG. 12 where neither the cube 1220 nor the cube 1230
include the profit metric needed for the satisfaction of the
query 1210, the system 200 may determine whether the
needed profit metric is derivable from one or more metrics
included in the cubes 1220 and 1230. For example, the
system 200 may determine that the profit metric needed for
the query 1210 may be calculated by subtracting cost metric
information from the cube 1230 from revenue metric infor-
mation from the cube 1220.

Returning to FIG. 11, if metric(s) needed for satisfaction
of the query are not derivable from one or more metrics in
one or more cubes, the system 200 determines that at least
some data is needed from a database to satisty the query
(1150). For example, in reference to FIG. 2, if the server 210
determines that metrics needed for satisfaction of a query
request received from the user system 250 are not derivable
from metric information from cubes in the cache 225, the
server 210 may determine that at least some data is needed
from the database system 220 to satisfy the received query
request.

Returning to FIG. 11, if metric(s) needed for satisfaction
of the query are derivable from one or more metrics in one
or more cubes, the system 200 selects the one or more cubes
from which the metric(s) needed for the query are derivable
(1160). For instance, in the example of FIG. 12 where the
profit metric needed for satisfaction of the query 1210 is
derivable from metric information in the cubes 1220 and
1230, the system 200 may select the cubes 1220 and 1230.

Returning to FIG. 11, the system 200 derives metric(s)
needed for the query using data from the selected one or
more cubes (1170). For instance, in the example of FIG. 12,
the system 200 may derive the profit metric needed for the
query 1210 by subtracting cost metric information from the
cube 1230 from revenue metric information from the cube
1220.

US 9,454,594 B2

13

The system 200 stores the derived metric(s) in cube data
(1180). For instance, in the example of FIG. 12, the system
200 may store the derived profit metric in any or all of the
cube 1220, the cube 1230, or a newly created cube. The
derived profit metric may be used directly the next time a
query requesting the derived profit metric is received.

FIG. 13 is a schematic diagram of an example of a generic
computer system 1300. The system 1300 can be used for the
operations described in association with the processes 300,
600, 700, 900, and 1100, according to one implementation.
For example, the system 1300 may be included in the server
system 210.

The system 1300 includes a processor 1310, a memory
1320, a storage device 1330, and an input/output device
1340. Each of the components 1310, 1320, 1330, and 1340
are interconnected using a system bus 1350. The processor
1310 is capable of processing instructions for execution
within the system 1300. In one implementation, the proces-
sor 1310 is a single-threaded processor. In another imple-
mentation, the processor 1310 is a multi-threaded processor.
The processor 1310 is capable of processing instructions
stored in the memory 1320 or on the storage device 1330 to
display graphical information for a user interface on the
input/output device 1340.

The memory 1320 stores information within the system
1300. In one implementation, the memory 1320 is a com-
puter-readable medium. In one implementation, the memory
1320 is a volatile memory unit. In another implementation,
the memory 1320 is a non-volatile memory unit.

The storage device 1330 is capable of providing mass
storage for the system 1300. In one implementation, the
storage device 1330 is a computer-readable medium. In
various different implementations, the storage device 1330
may be a floppy disk device, a hard disk device, an optical
disk device, or a tape device.

The input/output device 1340 provides input/output
operations for the system 1300. In one implementation, the
input/output device 1340 includes a keyboard and/or point-
ing device. In another implementation, the input/output
device 1340 includes a display unit for displaying graphical
user interfaces.

The features described can be implemented in digital
electronic circuitry, or in computer hardware, firmware,
software, or in combinations of them. The apparatus can be
implemented in a computer program product tangibly
embodied in an information carrier, e.g., in a machine-
readable storage device, for execution by a programmable
processor; and method steps can be performed by a pro-
grammable processor executing a program of instructions to
perform functions of the described implementations by
operating on input data and generating output. The described
features can be implemented advantageously in one or more
computer programs that are executable on a programmable
system including at least one programmable processor
coupled to receive data and instructions from, and to trans-
mit data and instructions to, a data storage system, at least
one input device, and at least one output device. A computer
program is a set of instructions that can be used, directly or
indirectly, in a computer to perform a certain activity or
bring about a certain result. A computer program can be
written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and

10

15

20

25

30

35

40

45

50

55

60

65

14

special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gen-
erally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
elements of a computer are a processor for executing
instructions and one or more memories for storing instruc-
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can
be supplemented by, or incorporated in, ASICs (application-
specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide input to the computer. The
computer having the display device may be a mobile device
with an integrated display (e.g., a smart phone).

The features can be implemented in a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:

1. A computer-implemented method comprising:

receiving a data request that is associated with a query;

identifying data needed for satisfaction of the query;

accessing, from electronic storage, information defining
data available in data structures stored in memory at a
time of the data request;

comparing the identified data needed for satisfaction of

the query with the accessed information defining data
available in the data structures in the memory at the
time of the data request;

based on comparison results, determining that the iden-

tified data needed for satisfaction of the query is not
represented by a single data structure in the memory at
the time of the data request;

based on the determination that the identified data needed

for satisfaction of the query is not represented by a

US 9,454,594 B2

15

single data structure in the memory at the time of the
data request, determining that at least a first portion of
the identified data needed for satisfaction of the query
is represented by a single data structure, and at least a
second portion of the identified data needed for satis-
faction of the query is obtainable through processing
data at a data warehouse;

based on the determination that at least a first portion of
the identified data needed for satisfaction of the query
is represented by a single data structure, and at least a
second portion of the identified data needed for satis-
faction of the query is obtainable through processing
data at a data warehouse, processing the data at the data
warehouse to obtain the second portion of the data
needed for satisfaction of the query; and

generating a response to the data request using the data
needed for satisfaction of the query by combining the
first portion of data from the single data structure and
the second portion of data obtained by processing the
data at the data warehouse.

2. The method of claim 1:

wherein identifying data needed for satisfaction of the
query comprises identifying one or more attributes of
data needed for satisfaction of the query;

wherein accessing, from electronic storage, information
defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, attribute informa-
tion for data structures stored in the memory at the time
of the data request;

wherein comparing the identified data needed for satis-
faction of the query with the accessed information
defining data available in data structures stored in
memory at the time of the data request comprises
comparing the identified one or more attributes of data
needed for satisfaction of the query with the accessed
attribute information for data structures stored in the
memory at the time of the data request; and

wherein determining that the identified data needed for
satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the one or more
attributes of data needed for satisfaction of the query
are not included in a single data structure in the
memory at the time of the data request.

3. The method of claim 1:

wherein identifying data needed for satisfaction of the
query comprises identifying a filter parameter of the
query;

wherein accessing, from electronic storage, information
defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, filter information
for data structures stored in the memory at the time of
the data request;

wherein comparing the identified data needed for satis-
faction of the query with the accessed information
defining data available in data structures stored in
memory at the time of the data request comprises
comparing the identified filter parameter of the query
with the accessed filter information for data structures
stored in the memory at the time of the data request;
and

wherein determining that the identified data needed for
satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the identified filter

10

15

20

25

30

35

40

45

50

55

60

65

16

parameter of the query does not match a single data
structure in the memory at the time of the data request.

4. The method of claim 1:

wherein identifying data needed for satisfaction of the

query comprises identifying one or more metrics
needed for satisfaction of the query;

wherein accessing, from electronic storage, information

defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, metric information
for data structures stored in the memory at the time of
the data request;

wherein comparing the identified data needed for satis-

faction of the query with the accessed information
defining data available in data structures stored in
memory at the time of the data request comprises
comparing the identified one or more metrics needed
for satisfaction of the query with the accessed metric
information for data structures stored in the memory at
the time of the data request; and

wherein determining that the identified data needed for

satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the identified one or
more metrics needed for satisfaction of the query are
not included in a single data structure in the memory at
the time of the data request.

5. The method of claim 1, wherein the data structures
stored in memory at a time of the data request comprise
cubes, each of the cubes being a pre-processed abstraction of
data stored in a database system and being stored in the
memory prior to receipt of the data request.

6. The method of claim 1, wherein accessing, from
electronic storage, information defining data available in
data structures stored in memory at the time of the data
request comprises accessing, from the memory, the data
structures stored in memory at the time of the data request.

7. The method of claim 1, wherein receiving the data
request that is associated with the query comprises receiving
a query.

8. The method of claim 1, wherein receiving the data
request that is associated with the query comprises receiving
a report generation request that requires execution of a query
to gather data required to generate the report.

9. A system comprising:

one or more computers; and

at least one computer-readable medium coupled to the one

or more computers having instructions stored thereon

which, when executed by the one or more computers,

cause the one or more computers to perform operations

comprising:

receiving a data request that is associated with a query;

identifying data needed for satisfaction of the query;

accessing, from electronic storage, information defin-
ing data available in data structures stored in
memory at a time of the data request;

comparing the identified data needed for satisfaction of
the query with the accessed information defining
data available in the data structures in the memory at
the time of the data request;

based on comparison results, determining that the iden-
tified data needed for satisfaction of the query is not
represented by a single data structure in the memory
at the time of the data request;

based on the determination that the identified data needed

for satisfaction of the query is not represented by a
single data structure in the memory at the time of the

US 9,454,594 B2

17

data request, determining that at least a first portion of
the identified data needed for satisfaction of the query
is represented by a single data structure, and at least a
second portion of the identified data needed for satis-
faction of the query is obtainable through processing
data at a data warehouse;

based on the determination that at least a first portion of
the identified data needed for satisfaction of the query
is represented by a single data structure, and at least a
second portion of the identified data needed for satis-
faction of the query is obtainable through processing
data at a data warehouse, processing the data at the data
warehouse to obtain the second portion of the data
needed for satisfaction of the query; and

generating a response to the data request using the data
needed for satisfaction of the query by combining the
first portion of data from the single data structure and
the second portion of data obtained by processing the
data at the data warehouse.

10. The system of claim 9:

wherein identifying data needed for satisfaction of the
query comprises identifying one or more attributes of
data needed for satisfaction of the query;

wherein accessing, from electronic storage, information
defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, attribute informa-
tion for data structures stored in the memory at the time
of the data request;

wherein comparing the identified data needed for satis-
faction of the query with the accessed information
defining data available in data structures stored in
memory at the time of the data request comprises
comparing the identified one or more attributes of data
needed for satisfaction of the query with the accessed
attribute information for data structures stored in the
memory at the time of the data request; and

wherein determining that the identified data needed for
satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the one or more
attributes of data needed for satisfaction of the query
are not included in a single data structure in the
memory at the time of the data request.

11. The system of claim 9:

wherein identifying data needed for satisfaction of the
query comprises identifying a filter parameter of the
query;

wherein accessing, from electronic storage, information
defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, filter information
for data structures stored in the memory at the time of
the data request;

wherein comparing the identified data needed for satis-
faction of the query with the accessed information
defining data available in data structures stored in

10

15

20

25

30

35

40

45

50

55

18

memory at the time of the data request comprises
comparing the identified filter parameter of the query
with the accessed filter information for data structures
stored in the memory at the time of the data request;
and

wherein determining that the identified data needed for

satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the identified filter
parameter of the query does not match a single data
structure in the memory at the time of the data request.
12. The system of claim 9:
wherein identifying data needed for satisfaction of the
query comprises identifying one or more metrics
needed for satisfaction of the query;

wherein accessing, from electronic storage, information

defining data available in data structures stored in
memory at the time of the data request comprises
accessing, from electronic storage, metric information
for data structures stored in the memory at the time of
the data request;

wherein comparing the identified data needed for satis-

faction of the query with the accessed information
defining data available in data structures stored in
memory at the time of the data request comprises
comparing the identified one or more metrics needed
for satisfaction of the query with the accessed metric
information for data structures stored in the memory at
the time of the data request; and

wherein determining that the identified data needed for

satisfaction of the query is not represented by a single
data structure in the memory at the time of the data
request comprises determining that the identified one or
more metrics needed for satisfaction of the query are
not included in a single data structure in the memory at
the time of the data request.

13. The system of claim 9, wherein the data structures
stored in memory at a time of the data request comprise
cubes, each of the cubes being a pre-processed abstraction of
data stored in a database system and being stored in the
memory prior to receipt of the data request.

14. The system of claim 9, wherein accessing, from
electronic storage, information defining data available in
data structures stored in memory at the time of the data
request comprises accessing, from the memory, the data
structures stored in memory at the time of the data request.

15. The system of claim 9, wherein receiving the data
request that is associated with the query comprises receiving
a query.

16. The system of claim 9, wherein receiving the data
request that is associated with the query comprises receiving
a report generation request that requires execution of a query
to gather data required to generate the report.

#* #* #* #* #*

